法眼。
你现在作为菲涅尔教授的学生,是我非常羡慕的啊!等见到菲涅尔教授,一定要代我问声好!”
程诺含笑点头,“一定。
”
“哦,对了,这位是我第一届的学生,迈伦,现在是加州大学数学系的一位讲师。
”拉塞尔给程诺介绍旁边的那位青年。
程诺目光深邃的望了迈伦一眼,没有说话。
青年迈伦倒是讪讪笑笑,打哈哈的开口说道,“原来大家都是朋友。
那这位小兄弟,你手中那份被弄湿的资料就不去追究那位空姐的问题了。
下了飞机后我再去打印一份就好。
”
程诺摇头,耸耸肩,“那倒是不用了,老师的文章,如果我还不能补全,我这个学生做的岂不是也太不合格了?”
“有笔吗?”程诺伸手。
“哦,有!”青年恍惚了一下,从口袋中掏出一支笔递给程诺。
论文被咖啡弄脏的部分内容,程诺已经看过一遍。
拿过笔,他直接在没有被打湿的位置唰唰唰写着。
给定n1维复欧氏空间1,考虑子集合1\{0}。
在其中引进等价关系如下:如果对1\{0}中的点z1,z2,…,zn1和w1,w2,…,wn1,存在非零复数p,使得……
在n维复射影空间cp中取出以点z1,z2,…,zn,1为代表元素的等价类,这些等价类构成cpn中的子集,其中每个点,对应c中的点z1,z2,…,zn,这是到c上的一一对应.将看做和c等同,随后……
令u0n为pr中坐标x0的点全体,则ur,且u0,u1,…,un组成pr的一个开覆盖。
……建立k上的n维射影空间pk.在概形理论中,还将射影空间建立在整数环z上,即建立射影概形pz。
由此对任意概形x可以建立px,创作纤维积。
落笔,在那位空姐震撼的眼神中,程诺将纸和笔同时放在那位青年手中。
程诺笔直挺拔的声音站在青年面前,给他一种需要抬头仰望的感觉。
“呶,这就是文章缺失的部分了。
现在,可以让这位空姐走了吧